Polynomial skew-products in dimension 2: Bulging and Wandering Fatou components
نویسندگان
چکیده
منابع مشابه
A Dichotomy for Fatou Components of Polynomial Skew Products
We consider polynomial maps of the form f(z,w) = (p(z), q(z,w)) that extend as holomorphic maps of CP. Mattias Jonsson introduces in “Dynamics of polynomial skew products on C2” [Math. Ann., 314(3): 403– 447, 1999] a notion of connectedness for such polynomial skew products that is analogous to connectivity for the Julia set of a polynomial map in one-variable. We prove the following dichotomy:...
متن کاملWandering Fatou Components and Algebraic Julia Sets
We study the dynamics of polynomials with coefficients in a nonArchimedean field L, where L is the completion of an algebraic closure of the field of formal Laurent series. We prove that every wandering Fatou component is contained in the basin of a periodic orbit. We give a dynamical characterization of polynomials having algebraic Julia sets. More precisely, we establish that a polynomial wit...
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملon constant products of elements in skew polynomial rings
let $r$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $r$ and $f(x)=a_0+a_1x+cdots+a_nx^n$ be a nonzero skew polynomial in $r[x;alpha]$. it is proved that if there exists a nonzero skew polynomial $g(x)=b_0+b_1x+cdots+b_mx^m$ in $r[x;alpha]$ such that $g(x)f(x)=c$ is a constant in $r$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $r$ such tha...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bollettino dell'Unione Matematica Italiana
سال: 2016
ISSN: 1972-6724,2198-2759
DOI: 10.1007/s40574-016-0101-1